If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x-0.5x^2=0
a = -0.5; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·(-0.5)·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*-0.5}=\frac{-32}{-1} =+32 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*-0.5}=\frac{0}{-1} =0 $
| 5^x+5=125^2x | | 5(2x-10)+65=2(4x+15)-3x | | -7(-4+7k)=-18-3k | | 5x=16+2(5x+2) | | 6(x+3)-8x=22 | | 8x+78=45-4x | | 5x+20=15+4x | | (5x+8)/2=4x+1 | | X8+50=450-x | | b-4=-5b-64 | | x+0.04x=205 | | 3x+4(3x-1)=26 | | -(3x+4)-(-2x-5)=1 | | X3+x*x=675 | | 2(7x+8)+10(x-1)=-66 | | 29=3-8u | | x+6*2x-4=936 | | 4÷3x+1=10 | | -29=3-8u | | 3x+4(5x+3)=-11 | | a•5+1=10 | | 9x-5×=36 | | 8-4m=-3m-5 | | 2(x+8)=3x+25 | | 7w-w=48 | | 0x+1=2x+6 | | 0.04(g+6)-0.02g=3.16 | | 2x+(0)=10 | | 12=4w+2w | | y=1/2+10 | | 12+5x-9=23 | | 8n+-2=14 |